
Electrical and Computer Engineering
Senior Design Poster Presentation Fair

4/22/2019

Senior Design sdmay19-25

Special thanks to Brian Wagner for encouraging us to make a marketable product.

Handheld Emulation Station
Introduction/Summary:
The Handheld Emulation Station is a student designed and proposed project. We enjoy playing retro games and wanted to create a
better product than those currently available on the market. Our goal was to create an Emulation Station that focused on mobility,
battery life, and user experience. Our emulator is based on a Raspberry Pi Zero with a 3.5 inch LCD screen and a 3000mAh battery.
This project allows us to utilize the skills we learned throughout our academic career by designing an embedded system from scratch.

Implementation and Design:

Emulator Roadblocks:
● Implementation of a dual purpose 8 bit and 16 bit processor
● Varied documentation

○ Multiple documents
○ Inconsistencies

● GPU implementation
○ Screen layering

Hardware Roadblocks:
● Manufacturer changed pinout without updating datasheet
● Shipping time/Needing to wait an additional two days to retest

Module Roadblocks:
● Interactive /dev filesystems can yield complex source
● Difficult to test or build without working on an RPi directly

Future improvements:
Emulator
● Comprehensive emulation for the Game Boy system
● Comprehensive emulation for the Game Boy Color system
● Graphical dialog to select rom files

Kernel module
● Further tune real-time input support
● More intuitive naming scheme for /dev/rt* files

PCB
● Implement independent power circuit

○ Currently abandoned due to time constraints
● Thickness can be trimmed down an extra 3-5 mm with four more hours
● Add docking functionality as well as design a dedicated docking station
● Audio Output (Speaker)

Testing and Evaluation:
Hardware and Software Testing
● The PCB was tested via a trial and error testing
● We used a multimeter and a bench power supply in our testing. The multimeter was used for

testing the battery voltage, current draw, as well as continuity testing. The bench power supply was
used to simulate a battery for testing the circuit

Functional Testing
● The emulator was tested using unit tests available in the Go programming language toolkit

program, test. Each CPU opcode type has its own test to validate its accuracy
● Testing using the test package within Go can create unit tests for internals and externals at once

as the tests run within the package being tested

Standards/Best Practices:
Emulator
● CPU instruction set. This is an important standard to be aware of to make correctly implementing

the CPU possible
● ROM formats for the various systems our emulator platform may support

Battery
We will have to adhere to the international standards for lithium batteries.
● One such standard is the UL 1642
● We also must follow a standard created by the United Nations on safe transportation of dangerous

goods, including lithium batteries, see ST/SG/AC.10/27/Add.2
● We also must follow BS EN 60086-4:2000 and EC 60086-4:2000 since lithium batteries will be our

primary power source

Functional/
Non-Functional Requirements:
Functional
● Faithfully emulate multiple retro systems
● Load and save games

○ Cloud backup support

Non-Functional
● Portable
● Low latency
● Battery life > 5hrs

Figure 4
Main board/Motherboard

Figure 5
Daughter input boards

Architecture Design
● PCB

○ Buttons
■ Used to operate and perform functions on the emulator

○ USB 2.0
■ Used for peripherals and supports external storage

● 3000 mAh Battery
○ Powers the system for at minimum of five hours

● Raspberry Pi Zero
○ Computer system that runs the software
○ Input given from PCB

● Kernel Module
○ Abstraction of gpio pin input state to /dev file system
○ Closer to real-time input than providing buttons over USB

● Emulator Software
○ CPU cycling supported with 510 opcodes (255 regular, 255 CB)
○ Cartridge Loading supported
○ Reading and Writing to Memory
○ Screen Rendering functionality

● 3.5 inch LCD Display
○ Renders the data from the GPU onto the screen

GPIO Pin Number Dev File Peripheral

03 /dev/rt0 Y-axis Joystick

05 /dev/rt4 D on D-Pad

07 Reserved Speaker

12 /dev/rt1 X-axis Joystick

13 /dev/rt2 U on D-Pad

15 /dev/rt3 R on D-Pad

16 /dev/rt5 L on D-Pad

29 /dev/rt12 L trigger

31 /dev/rt13 R trigger

33 /dev/rt6 X

34 /dev/rt7 A

35 /dev/rt9 Y

36 /dev/rt8 B

37 /dev/rt11 Start

40 /dev/rt10 Select

Members: Nic Losby, Sean Hinchee, Jacob Nachman, Nick Lang, Matthew Kirpes, and Faculty Advisor Dr. Julie Rursch

Figure 1
High Level System Architecture Design

Figure 2
Emulator System Architecture DiagramEmulator

Our emulator was implemented in the GO programming
language. It has a fully functioning CPU with 510
implemented opcodes, working memory that can be
read and written from, functional screen rendering,
partially functional GPU and the ability to make save
states.

PCB
The PCB started with a layout of a Raspberry Pi Zero W
and aligning it by the GPIO pins and mounting holes.
The corner where the battery would have attached has
been carved out. The extra space for a speaker has
been reserved for future work.

Figure 3
Kernel Module System Layout

Special thanks to Brian Wagner for the motivation to propose this project as well as Jack Potter for use of his 3D printer

